

Building a Data Infrastructure for AI/ML

Keith PijanowskiMinIO

Agenda

- Data Lakehouses
- MLOps
- Traditional Al
- Generative Al
- Distributed Training
- Considerations for GPU usage

The Data Lakehouse

Data Warehouse

Data Lake Data Lakehouse

Open Table Formats

- Apache Iceberg: key contributor Netflix
- Apache Hudi: key contributor Uber
- Delta Lake: key contributor Databricks

An OTF Based Data Warehouse

OTF Based Data Warehouse

- Acid Transactions
- Schema Evolution
- Partition Evolution
- Time Travel
- External Tables
- Zero Copy Branching

Apache Iceberg Architecture

A Simple Option for the Storage Layer

Two Instance of Min for the Storage Layer

A Simple Option for the Processing Layer

Disaggregated Compute

Reference Architecture

Machine Learning Operations

Machine Learning vs. Application Development

Application Development

Coding is the main activity

Data does not change while coding

Unit test and end to end test

Machine Learning

Experimentation is the main activity

Data Changes

Metrics track quality

MLOps Features

- Support from a major player
- 2. Data Lakehouse Integration
- 3. Experiment Tracking
- 4. Facilitate Collaboration
- 5. Training Pipeline
- 6. Data Pipeline
- 7. Serverless Functions
- 8. Model Registry
- 9. Model Packaging
- 10. Model Serving

MLflow from Databricks

- Support from a major player Databricks
- 2. Data Lakehouse Integration Data Lake integration
- 3. Experiment Tracking Yes
- 4. Facilitate Collaboration Yes
- 5. Training Pipeline Some using MLflow Recipes
- 6. Data Pipeline Some using MLflow Recipes
- 7. Serverless Functions No
- 8. Model Registry Yes using Data Artifacts
- 9. Model Packaging Yes
- **10.** Model Serving **Yes**

Kubeflow from Google

- 1. Support from a major player Google
- 2. Data Lakehouse Integration Data Lake integration
- 3. Experiment Tracking Yes
- 4. Facilitate Collaboration Yes
- 5. Training Pipeline Yes, using Kubeflow Pipelines
- 6. Data Pipeline Yes, using Kubeflow Pipelines
- 7. Serverless Functions Yes, Hermetic Functions, Python Containers, Custom
- 8. Model Registry Yes using Data Artifacts
- 9. Model Packaging Yes via an extension
- 10. Model Serving Yes via an extension

MLRun from Iguazio (McKinsey and Company)

- Support from a major player McKinsey and Co.
- 2. Data Lakehouse Integration Data Lake integration
- 3. Experiment Tracking Yes
- 4. Facilitate Collaboration Yes
- 5. Training Pipeline Yes
- 6. Data Pipeline Yes
- 7. Serverless Functions Yes using Nuclio and KubeFlow Pipelines
- 8. Model Registry **Yes using Data Artifacts**
- 9. Model Packaging Yes
- 10. Model Serving **Yes**

Definitions

Traditional AI

Directly model the relationship between input data and output labels.

Examples: Regression, Categorization, and Classification

Generative AI

Probability Distributions

Generates new data. Trained on unstructured data (text). Harder to test.

Traditional Al MINIO

Traditional AI and the Data Lake

- Unstructured Data lives in the Data Lake
 - Examples: Images, Videos, Audio
- Structured Data may also live in the Data Lake.
 - Examples: AVRO, Parquet
- Add structured data to the Data Warehouse of other workloads will benefit from it.

Zero Copy Branching

Generative Al MINIO

Document Pipelines

Search without a Vector DB

```
SELECT snippet
FROM MyCorpusTable
WHERE (text like '%artificial
intelligence%' OR
        text like '%ai%' OR
        text like '%machine learning%' OR
        text like '%ml%' OR
         ... and on and on ...
```


Search with a Vector DB

```
Get {
        MyCorpusTable(nearText: {concepts:
["artificial intelligence"]})
      {snippet}
```


Retrieval Augmented Generation (RAG)

Fine-Tuning LLMs

Distributed Training

Distributed Training for Traditional Al

RAG Needs Distributed Training

Considerations for GPU Usage

The Current State of GPUs

Release Date	GPU	Performance	Memory	Memory Bandwidth	Cost
May 2020	A100	0.62 petaFLOPS	40 GB	1,555 GB/s	\$10,000
March 2022	H100	1.98 petaFLOPS	80 GB	3.35 TB/s	\$25,000
June 2024	H200	1.98 petaFLOPS	141 GB	4.8 TB/s	\$30,000
Early 2025	B100	3.5 petaFLOPS	192 GB	8 TB/s	\$35,000
Early 2025	B200	4.5 petaFLOPS	192 GB	8 TB/s	\$40,000

petaFLOP: 1,000,000,000,000

B200: 4,500,000,000,000

The Starving GPU Problem

The Starving GPU Problem - Simplified

MinIO Cache

MinIO Cache

FLOPS and More FLOPS

Name	Unit	Value
kiloFLOPS	kFLOPS	10 ³
megaFLOPS	MFLOPS	10 ⁶
gigaFLOPS	GFLOPS	10 ⁹
teraFLOPS	TFLOPS	10 ¹²
petaFLOPS	PFLOPS	10 ¹⁵
exaFLOPS	EFLOPS	10 ¹⁸
zettaFLOPS	ZFLOPS	10 ²¹
yottaFLOPS	YFLOPS	10 ²⁴
ronnaFLOPS	RFLOPS	10 ²⁷
quettaFLOPS	QFLOPS	10 ³⁰

Blog and White Paper Links Information

MLOps

The Architects Guide to Machine Learning Operations (MLOps)

MLflow

Setting up a Development Machine with MLFlow and MinIO MLflow Tracking and MinIO MLflow Model Registry and MinIO

MLRun

Setting Up A Development Machine with MLRun and MinIO Model Training and MLOps using MLRun and MinIO

KubeFlow

Setting up a Development Machine with Kubeflow Pipelines 2.0 and MinIO

Building an ML Data Pipeline with MinIO and Kubeflow v2.0

Building an ML Training Pipeline with MinIO and Kubeflow v2.0

Blog and White Paper Links Information

Distributed Training

Distributed Training with Ray Train and MinIO

Distributed Data Processing with Ray Data and MinIO

Distributed Training and Experiment Tracking with Ray Train, MLflow, and MinIO

Generative Al

Build a Distributed Embedding Subsystem with MinIO, Langchain, and Ray Data Improve RAG Performance with Open-Parse Intelligent Chunking

OTF-based Data Warehouse

Data Lake Mysteries Unveiled: Nessie, Dremio, and MinIO Make Waves

Building Modern Data Architectures with Iceberg, Tabular and MinIO

The Disruptive Nature of Data Lakehouses

A Developer's Introduction to Apache Iceberg using MinIO

Building a Data Lakehouse using Apache Iceberg and MinIO

Reference Architectures

Modern Datalake Reference Architecture

AI/ML Within A Modern Datalake

Summary

- The Data Lakehouse
- MLOps Feature List
- Traditional Workloads
- Generative Workloads
- Distributed Training
- GPU Usage

Thank you!

For more information: **keith@min.io**

- @minio
- nttps://github.com/minio/minio
- https://slack.min.io
- https://min.io

Generic Cache

Modern System Architecture for Al Workloads

MinIO's AI Ecosystem Provides Leverage

† TensorFlow	Kubeflow	ARROW	ॐ RAY	DVC	PYT <mark></mark>
H ₂ O.ai	DELTA LAKE	Spark	Flink	ml <i>flow</i>	trino
Weights & Biases	LangChain	Apache Airflow	🕯 Pachyderm	APACHE F	METAFLOW
bodo.ai	MLRun	lakeFS	Weaviate	Milvus	ঞ্জী Snorkel

Uses of Generative Al

- Research (Questions and Answers)
- ChatBot for Support (Conversational AI)
- Document Creation
- Summarization
- Language Translation and Localization
- Entity Recognition